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Performance of a vine shoots-derived activated carbon during dynamic adsorption
of CO2 in dry and humid conditions
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PURPOSE OF THE ABSTRACT

Removing CO2 from low-pressure flue gas (i.e., CO2 capture in postcombustion) has been the focus of extensive
research over the last 30 years. As an alternative to the energy-intensive amine-based chemical absorption
processes, CO2 capture via adsorption on renewable biomass-derived carbons has recently gained increased
interest, since these adsorbents are relatively cheap, require low energy for regeneration, and show a relatively
good tolerance to moisture existing in flue gas [1]. An increasing number of previous studies have focused on
producing activated carbons (ACs) from different biomass precursors. However, a major part of these studies has
been limited to equilibrium uptake measurements. For this reason, there is a need to test the ability of
biomass-derived ACs under dynamic conditions. In this study, we investigated the performance of a physically
activated vine shoots-derived biochar to separate CO2 from N2/CO2 binary mixtures (in dry and humid
conditions) via multicycle breakthrough (BT) measurements.

Biochar was first produced by slow pyrolysis of vine shoots under N2 flow at 500 °C in a packed bed reactor [2].
The obtained solid material was then physically activated at 800 °C under a steady flow of CO2 in N2 (20/80 vol.
%). Under these conditions, a holding time of 1 h resulted in a burn-off of approximately 22 wt. %. Textural
properties of the resulting AC were estimated from N2 and CO2 adsorption isotherms at -196 and 0 °C,
respectively, using a Micromeritics ASAP 2020. Adsorption isotherms of both pure components at 25 and 50 °C
were also measured. The apparent selectivity CO2/N2 was calculated according to Hao et al. [3]. Table 1 reports
the most important parameters deduced from the above-mentioned measurements.

Cyclic BT tests at 25 and 50 °C were performed in a stainless steel fixed-bed column (20.9 mm ID). 15.1 g of AC
(which was previously degassed) was packed into the column, leading to a bed height of 22 cm. Dynamic
adsorption was then measured by feeding a flow containing CO2 and N2 (14-15 vol. % of CO2) at 110 kPa and a
total flow rate of 0.22 L (STP) min-1. The gas residence time within the bed was 12.2-13.2 s, which is notably
lower than those used in previous studies [4]. For dynamic experiments under humid conditions, a steady flow of
water was fed using a HPLC pump. The adsorption stage was continued until saturation, where the outlet
concentration of CO2 (measured using a continuous gas analyzer ABB) reaches the value at the inlet. Afterwards,
the bed was regenerated using a vacuum pump at an absolute pressure of 20 kPa under a flow of N2.

Fig. 1 shows the obtained breakthrough curves (5 cycles) in dry conditions at 25 and 50 °C. It can be seen that
the performance at 25 °C was more than acceptable, in terms of breakthrough time, stability, and CO2 uptake,
which was 0.87 £ 0.09 mmol g-1 (75 = 1.9 % until BT time). This value was quite close to that of equilibrium,



indicating a relatively fast kinetics. Furthermore, the apparent selectivity CO2/N2 was 45 + 7.4, considerably
higher than the value reported in Table 1. As expected, the CO2 uptake at 50 °C decreased to 0.50 £ 0.02 mmol
0-1 (69 = 1.7 % until BT time). The apparent selectivity CO2/N2 (29 + 1.1) was in this case more similar to that
estimated from adsorption isotherms.

Under humid conditions at 50 °C, the adsorbent exhibited good stability (after 10 cycles), considerably adsorption
capacities (0.47 £ 0.06 mmol g-1), and an outstanding apparent selectivity (138 + 44.0). However, the observed
BT times were shorter than those measured at dry conditions, leading to a marked decrease in the CO2 uptake
until BT time (30 £ 2.2 %). This result suggests that a higher adsorption pressure and/or a longer gas residence
time could be required for a proper adsorption of CO2 in the presence of moisture.
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Figure 1. CO2 breakthrough curves in dry conditions at 25 °C (a) and 50 °C (b).
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Textural properties, adsorption capacity and apparent CO2 breakthrough curves in dry conditions at 25 °C
selectivity deduced from adsorption isotherms (a) and 50 °C (b)
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