SISGC2019 Mory 13**- 17*

N°356 / OC TOPIC(s) : Homogenous, heterogenous and biocatalysis / Clean reactions

"Touching" chemistry-selective amination of alcohols to primary amines by ammonia

AUTHORS

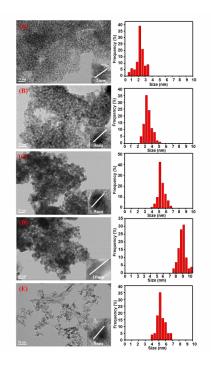
Vitaly ORDOMSKY / SOLVAY, JIN DU ROAD 3966, SHANGHAI Andrei KHODAKOV / UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE LILLE, C3, LILLE

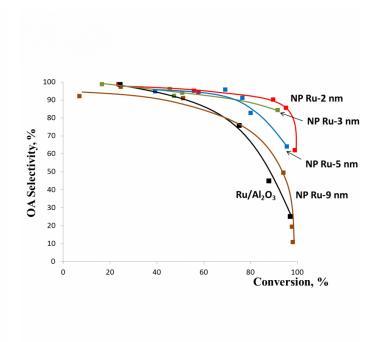
PURPOSE OF THE ABSTRACT

Boudart classified heterogeneous catalytic reactions in two groups depending on the sensitivity of the catalytic activity on the particle size. On the one hand, for structure-sensitive reactions, the turnover frequency (TOF), or reaction rate normalized per surface atom, changes with the particle size [1]. On the other hand, for structure-insensitive reactions, the TOF remains directly proportional to the number of surface sites in a broad particle size range. Herein, we present a systematic study of the influence of the Ru particle size on the catalytic activity and selectivity for direct amination reactions. We have synthesized and characterized a series of Ru nanoparticles (NPs) with uniform size, shape and structure and tested them in direct amination of 1-octanol (OL) with NH3 targeting the synthesis of 1-octylamine (OA) [2].

Water-in-oil microemulsion with water droplets formed by reverse micelles dispersed in a continuous hexanol phase were prepared for the synthesis of Ru NPs with variable sizes according to ref [3].

The TEM images and histograms (Figure 1) indicate a uniform size distribution for all the synthesized Ru NPs. For comparison, a reference Ru/Al2O3 catalyst prepared by conventional impregnation of a Ru salt precursor exhibited a broader particle size distribution with an average size of Ru NPs of 5 nm.


The catalytic performance of Ru NPs was studied in the liquid-phase amination reaction of OL with NH3 in a batch reactor.


The conversion-selectivity curves measured for different Ru NPs and Ru/Al2O3 were shown in Figure 2. Interestingly, a very high OA selectivity at high OL conversion can only be achieved for smaller Ru NP-2 nm. For Ru NPs with larger sizes (i.e. 3, 5 and 9 nm), the OA selectivity declines gradually with the OL conversion, matching the pattern obtained on Ru/Al2O3. Octylnitrile and secondary imine were obtained as the main products over Ru NP-2 nm and dioctylamine was the main product over large Ru NPs and Ru/Al2O3. Note that the secondary imine did not undergo subsequent hydrogenation to secondary amine over Ru NP-2 nm. Similar structural sensitivity of the selectivity to primary amine on the Ru NP size was also observed for a wide range of other alcohols (furfuryl alcohol, benzyl alcohol and 2-butanol).

Conclusion

The primary octanol amination is found to be a structure insensitive reaction, while, the self-coupling of octylamine was sensitive to the size of Ru NPs. Lower rate of amine self-coupling was observed over smaller non-supported Ru NPs. The structural sensitivity of Ru NPs to octylamine self-coupling was attributed to the structural and electronic effects during hydrogenation of secondary imine.

FIGURES

FIGURE 1

Figure 1

TEM images and histograms of ruthenium particle size in Ru NP-2 nm (a), -3 nm (b), -5 nm (c), -9 nm (d), and Ru/Al2O3(e)

FIGURE 2

Figure 2

Conversion-selectivity curves for Ru NPs and Ru/Al2O3 in amination

KEYWORDS

amination | primary amines | structure sensitivity | alcohols

BIBLIOGRAPHY

- [1] E. Iglesia, M. Boudart, J. Phys. Chem. 1991, 95, 7011.
- [2] M. Boutonnet, J. Kitzling, P. Stenius, Colloids Surf. 1982, 5, 209-225.
- [3] G. Liang, Y. Zhou, J. Zhao, A. Khodakov, V. Ordomsky, ACS Catal., 2018, 8, 11226-11234.